Multifactor assessments to determine the overall performance of supercritical fluid extraction from Gynura procumbens essential oil | Scientific Reports – Nature.com

Adeib, I. S., Norhuda, I., Roslina, R. N. & Ruzitah, M. S. Mass transfer and solubility of hibiscus cannabinus l. Seed oil in supercritical carbon dioxide. J. Appl. Sci. 10, (2010).

Idris, S……..

  • Adeib, I. S., Norhuda, I., Roslina, R. N. & Ruzitah, M. S. Mass transfer and solubility of hibiscus cannabinus l. Seed oil in supercritical carbon dioxide. J. Appl. Sci. 10, (2010).

  • Idris, S. A., Markom, M., Abd Rahman, N. & Mohd Ali, J. Prediction of overall yield of Gynura procumbens from ethanol-water + supercritical CO2 extraction using artificial neural network model. Case Stud. Chem. Environ. Eng. 5, 100175 (2022).

    CAS 
    Article 

    Google Scholar 

  • Zainuddin, N. A., Tuah, F. & Mohd Yatim, S. R. Supercritical carbon dioxide extraction of oil from Chromolaena odorata leaves. Heal. Scope 1, 152–156 (2019).

    Google Scholar 

  • M Dionysia, MS Abdul Hayat, M Nik Musaadah, B Intan Nurulhani, MN Madihah, Z Nurul Husna, J Fadzureena, HF Lim, AL Tan, R Rosniza, MA Nor Azah, M Mastura & H Norini, Trend Penggunaan 18 Spesies Tumbuhan Ubatan Di Bawah Program Nkea Di Kalangan Pengamal Perubatan Tradisional Melayu Di Semenanjung Malaysia, Prosiding Persidangan Industri Herba, 7, 170–174 (2015).

  • Zhang, T., Gu, H.-W., Gao, J.-X., Li, Y.-S. & Tang, H.-B. Ethanol supernatant extracts of Gynura procumbens could treat nanodiethylnitrosamine-induced mouse liver cancer by interfering with inflammatory factors for the tumor microenvironment. J. Ethnopharmacol. 285, 114917 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, J. E., Wang, W. J., Zheng, G. D. & Li, L. Y. Physicochemical properties and antioxidant activities of polysaccharides from Gynura procumbens leaves by fractional precipitation. Int. J. Biol. Macromol. 95, 719–724 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shahlehi, S. & Petalcorin, M. I. R. Activation of cholinergic pathway induced vasodilation in rat aorta using aqueous and methanolic leaf extracts of Gynura procumbens. Biomed. Pharmacother. 143, 112066 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wong, S. K. et al. Anti-malarial and anti-inflammatory effects of gynura procumbens are mediated by kaempferol via inhibition of glycogen synthase kinase-3β (GSK3β). Sains Malaysiana 44, 1489–1500 (2015).

    CAS 
    Article 

    Google Scholar 

  • Chan, C.-H., Yusoff, R., Ngoh, G. & Kung, F. W. Extraction of anti-diabetic active ingredient, quercetin from herbal plant using microwave-assisted extraction (MAE) Technique. in The International Conference on Materials for Advanced Technologies 2–5 (SUNTEC Singapore, 2011). https://doi.org/10.13140/2.1.3487.4885.

  • Ning, T. J. et al. Inhibitory effects of gynura procumbens ethanolic extract on nitric oxide production and inducible nitric oxide synthase (iNOS) protein expression in macrophages. Sains Malaysiana 48, 1737–1744 (2019).

    CAS 
    Article 

    Google Scholar 

  • Guedes, A. R. et al. Extraction of Synadenium grantii Hook f. using conventional solvents and supercritical CO2 + ethanol. J. Supercrit. Fluids 160, 8–10 (2020).

    Article 
    CAS 

    Google Scholar 

  • Radzali, S. A., Markom, M. & Saleh, N. M. Co-solvent selection for supercritical fluid extraction (SFE) of phenolic compounds from Labisia pumila. Molecules 25, 1–15 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hassim, N., Markom, M., Rosli, M. I. & Harun, S. Scale-up approach for supercritical fluid extraction with ethanol–water modified carbon dioxide on Phyllanthus niruri for safe enriched herbal extracts. Sci. Rep. 11, 1–19 (2021).

    Article 
    CAS 

    Google Scholar 

  • Markom, M., Hassim, N., Hasan, M. & Daud, W. R. W. Modeling of supercritical fluid extraction by enhancement factor of cosolvent mixtures. Sep. Sci. Technol. 00, 1–13 (2020).

    CAS 

    Google Scholar 

  • Idris, S. A. & Markom, M. Effect of water content in Co solvent on yield of supercritical fluid extraction of gynura procumbens leaves. J. Comput. Theor. Nanosci. 17, 1203–1206 (2020).

    CAS 
    Article 

    Google Scholar 

  • Mohamed-Mahmood, M., Daud, W. R. W., Markom, M. & Mansor, C. N. A. N. C. Cosolvent selection for supercritical fluid extraction (SFE) of bioactive compounds from Orthosiphon stamineus. Sains Malaysiana 47, 1741–1747 (2018).

    CAS 
    Article 

    Google Scholar 

  • Hassim, N., Markom, M., Rosli, M. I. & Harun, S. Scale-up criteria and economic analysis for supercritical fluid extraction of Phyllanthus niruri. Chem. Eng. Process. Process Intensif. 139, 14–22 (2019).

    CAS 
    Article 

    Google Scholar 

  • Rai, A. Modeling Techniques in Empirical Supercritical Extraction Designs: Recent Trends and Practices. Innovative Food Processing Technologies Vol. 2 (Elsevier, 2021).

    Google Scholar 

  • Sovovà, H. & Stateva, R. P. Supercritical fluid extraction from vegetable materials. Rev. Chem. Eng. 27, 79–156 (2011).

    Article 
    CAS 

    Google Scholar 

  • Kupski, S. C. et al. Mathematical modeling of supercritical CO2 extraction of hops (Humulus lupulus L.). J. Supercrit. Fluids 130, 347–356 (2017).

    CAS 
    Article 

    Google Scholar 

  • Aydi, A. et al. Supercritical CO2 extraction of extracted oil from Pistacia lentiscus L.: Mathematical modeling, economic evaluation and scale-up. Molecules 25, (2020).

  • Khodaie, F. & Ghoreishi, S. M. Experimental extraction of gallic acid from brown sumac seed (Rhus coriaria) using supercritical carbon dioxide and ethanol as co-solvent: Modeling and optimization. J. Supercrit. Fluids 175, 105266 (2021).

    CAS 
    Article 

    Google Scholar 

  • Esquı́vel, M. M., Bernardo-Gil, M. G. & King, M. B. Mathematical models for supercritical extraction of olive husk oil. J. Supercrit. Fluids 16, 43–58 (1999).

    Article 

    Google Scholar 

  • Martínez, J., Monteiro, A. R., Rosa, P. T. V., Marques, M. O. M. & Meireles, M. A. A. Multicomponent model to describe extraction of ginger oleoresin with supercritical carbon dioxide. Ind. Eng. Chem. Res. 42, 1057–1063 (2003).

    Article 
    CAS 

    Google Scholar 

  • Tan, C. & Liou, D. Modeling of desorption at supercritical conditions. AIChE J. 35, 1029–1031 (1989).

    CAS 
    Article 

    Google Scholar 

  • Sovová, H. Rate of the vegetable oil extraction with supercritical CO2—I. Modeling of extraction curves. Chem. Eng. Sci. 49, 409–414 (1994).

    Article 

    Google Scholar 

  • Díaz-Reinoso, B., Moure, A. & Domínguez, H. Ethanol-modified supercritical Co2 extraction of chestnut burs antioxidants. Chem. Eng. Process. Process Intensif. 156, 108092 (2020).

    Article 
    CAS 

    Google Scholar 

  • Grijó, D. R., Vieitez Osorio, I. A. & Cardozo-Filho, L. Supercritical extraction strategies using CO2 and ethanol to obtain cannabinoid compounds from Cannabis hybrid flowers. J. CO2 Util. 28, 174–180 (2018).

    Article 
    CAS 

    Google Scholar 

  • Santos, K. A. et al. Candeia (Eremanthus erythroppapus) oil extraction using supercritical CO2 with ethanol and ethyl acetate cosolvents. J. Supercrit. Fluids 128, 323–330 (2017).

    CAS 
    Article 

    Google Scholar 

  • del Valle, J. M., Martín, Á., Cocero, M. J., de la Fuente, J. C. & de la Cruz-Quiroz, R. Supercritical CO2 extraction of solids using aqueous ethanol as static modifier is a two-step mass transfer process. J. Supercrit. Fluids 143, 179–190 (2019).

    Article 
    CAS 

    Google Scholar 

  • Sovová, H. Mathematical model for supercritical fluid extraction of natural products and extraction curve evaluation. J. Supercrit. Fluids 33, 35–52 (2005).

    Article 
    CAS 

    Google Scholar 

  • Reverchon, E. Mathematical modeling of supercritical extraction of sage oil. AIChE J. 42, 1765–1771 (1996).

    CAS 
    Article 

    Google Scholar 

  • Almeida, R. N. et al. Supercritical extraction of Hypericum caprifoliatum using carbon dioxide and ethanol+water as co-solvent. Chem. Eng. Process. Process Intensif. 70, 95–102 (2013).

    CAS 
    Article 

    Google Scholar 

  • Markom, M. High-pressure extraction and fractionation of tannins from Phyllanthus Niruri Linn. (dukung Anak). (2007).

  • Pavlic, B., Bera, O., Vidovic, S., Ilic, L. & Zekovic, Z. Extraction kinetics and ANN simulation of supercritical fluid extraction of sage herbal dust. J. Supercrit. Fluids 130, 327–336 (2017).

    CAS 
    Article 

    Google Scholar 

  • Johner, J. C. F., Hatami, T. & Meireles, M. A. A. Developing a supercritical fluid extraction method assisted by cold pressing for extraction of pequi (Caryocar brasiliense). J. Supercrit. Fluids 137, 34–39 (2018).

    CAS 
    Article 

    Google Scholar 

  • Hatami, T., Johner, J. C. F., Zabot, G. L. & Meireles, M. A. A. Supercritical fluid extraction assisted by cold pressing from clove buds: Extraction performance, volatile oil composition, and economic evaluation. J. Supercrit. Fluids 144, 39–47 (2019).

    CAS 
    Article 

    Google Scholar 

  • Chañi-Paucar, L. O., Osorio-Tobón, J. F., Johner, J. C. F. & Meireles, M. A. A. A comparative and economic study of the extraction of oil from Baru (Dipteryx alata) seeds by supercritical CO2 with and without mechanical pressing. Heliyon 7, e05971 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • de Aguiar, A. C., Osorio-Tobón, J. F., Silva, L. P. S., Barbero, G. F. & Martínez, J. Economic analysis of oleoresin production from malagueta peppers (Capsicum frutescens) by supercritical fluid extraction. J. Supercrit. Fluids 133, 86–93 (2018).

    Article 
    CAS 

    Google Scholar 

  • Horvat, G., Aladić, K. & Jokić, S. Supercritical CO2 extraction pilot plant design—Towards IoT integration. Teh. Vjesn. 24, 925–934 (2017).

    Google Scholar 

  • Vaeli, N., Honarvar, B., Esfandiari, N. & Aboosadi, Z. A. A laboratory study on extracting active ingredients from scrophularia striata boiss using ultrasound-assisted supercritical fluid extraction technique. S. Afr. J. Chem. Eng. 35, 111–117 (2021).

    Google Scholar 

  • Klein, E. J. et al. Techno-economical optimization of uvaia (Eugenia pyriformis) extraction using supercritical fluid technology. J. Supercrit. Fluids 174, 105239 (2021).

    CAS 
    Article 

    Google Scholar 

  • Murias, M. S., del Valle, J. M. & Núñez, G. A. Mathematical simulation of heat and mass transfer during controlled depressurization of supercritical CO2 in extraction vessels. J. Supercrit. Fluids 122, 43–51 (2017).

    CAS 
    Article 

    Google Scholar 

  • Zeng, J. & Yang, S. X. Optimal control of supercritical fluid extraction with a hybrid model. in Proceedings of the 2003 IEEE International Symposium on Intelligent Control (2003).

  • Turton, R., Bailie, R. C., Whiting, W. B. & Shaeiwitz, J. A. Analysis, Synthesis and Design of Chemical
    Processes, 2008, Pearson Education.

  • Ahmad, S. I., Hashim, H. & Hassim, M. H. Numerical Descriptive Inherent Safety Technique (NuDIST) for inherent safety assessment in petrochemical industry. Process Saf. Environ. Prot. 92, 379–389 (2014).

    CAS 
    Article 

    Google Scholar 

  • Ahmad, S. I. et al. Solvent design and inherent safety assessment of solvent alternatives for palm oil recovery. J. Loss Prev. Process Ind. 65, 104120 (2020).

    CAS 
    Article 

    Google Scholar 

  • Manjare, S. D. & Dhingra, K. Supercritical fluids in separation and purification: A review. Mater. Sci. Energy Technol. 2, 463–484 (2019).

    Google Scholar 

  • Guan, M., Xu, X., Tang, X. & Li, Y. Optimization of supercritical CO2 extraction by response surface methodology, composition analysis and economic evaluation of bamboo green wax. J. Clean. Prod. 330, 129906 (2022).

    CAS 
    Article 

    Google Scholar 

  • Rai, A., Bhargava, R. & Mohanty, B. Simulation of supercritical fluid extraction of essential oil from natural products. J. Appl. Res. Med. Aromat. Plants 5, 1–9 (2017).

    Google Scholar 

  • García-Pérez, J. S. et al. Thermodynamics and statistical correlation between supercritical-CO2 fluid extraction and bioactivity profile of locally available Mexican plants extracts. J. Supercrit. Fluids 122, 27–34 (2017).

    Article 
    CAS 

    Google Scholar 

  • Jiang, Y., Feng, Y., Lei, B. & Zhong, H. Impact mechanisms of supercritical CO2–ethanol–water on extraction behavior and chemical structure of eucalyptus lignin. Int. J. Biol. Macromol. 161, 1506–1515 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Attard, T. M., McElroy, C. R. & Hunt, A. J. Economic assessment of supercritical CO2 extraction of waxes as part of a maize stover biorefinery. Int. J. Mol. Sci. 16, 17546–17564 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chañi-Paucar, L. O., Johner, J. C. F., Zabot, G. L. & Meireles, M. A. A. Technical and economic evaluation of supercritical CO2 extraction of oil from sucupira branca seeds. J. Supercrit. Fluids 181, 105494 (2022).

    Article 
    CAS 

    Google Scholar 

  • Davidy, A. CFD simulation and mitigation with boiling liquid expanding vapor explosion (BLEVE) caused by jet fire. ChemEngineering 3, 1–22 (2019).

    CAS 
    Article 

    Google Scholar 

  • Shang, Z. et al. Experimental investigation of BLEVE in liquid CO2 phase-transition blasting for enhanced coalbed methane recovery. Fuel 292, 120283 (2021).

    CAS 
    Article 

    Google Scholar